Историко-критическое введение в философию естествознания

Сначала теоретики поле рассматривали как нечто, что в перспективе можно будет истолковать механистически с помощью эфира. Но со временем стало ясно, что эту программу осуществить невозможно. Единственный выход – это допустить, что пространство обладает физическим свойством передавать электромагнитные волны. Вместе с тем, по всей вероятности, слово «эфир» употреблять всё же можно, но исключительно для того, чтобы выразить вышеупомянутое физическое свойство пространства. «Слово эфир изменяло свой смысл много раз в процессе развития науки. В данный момент оно уже не употребляется для обозначения среды, построенной из частиц. Его история, никоим образом не законченная, продолжается теорией относительности» (Там же. – С. 452).

Итак, мы имеем две реальности: поле и вещество. Мы должны принять оба понятия. Но возникает вопрос: а можно ли считать поле и вещество двумя различными, совершенно несходными реальностями? Что составляет физический критерий, с помощью которого можно различить вещество и поле?

Когда не была известна теория относительности, ответ был простым: вещество имеет массу, а поле её не имеет. Такой ответ в сфере новых знаний совершенно недостаточен. Из общей теории относительности мы знаем, что вещество представляет собой огромные запасы энергии, и что энергия представляет вещество (См.: Там же. – С. 510). Таким образом, очень трудно провести качественное различие между полем и веществом, поскольку различие между массой и энергией, видимо, не качественное. Какой-либо резкой границы, разделяющей поле и вещество, невозможно себе представить. «Мы могли бы рассматривать вещество как такие области в пространстве, где поле чрезвычайно сильно. Таким путём можно было бы прийти к новым представлениям о природе. Их конечная цель состояла бы в объяснении всех событий в природе структурными законами, справедливыми всегда и всюду… В нашей новой физике не было бы места и для поля, и для вещества, поскольку единственной реальностью было бы поле. Этот новый взгляд внушён огромными достижениями физики поля, успехом в выражении законов электричества, магнетизма, тяготения в форме структурных законов и, наконец, эквивалентностью массы и энергии» (Там же. – С. 511).

Однако, авторы сочинения «Эволюция физики» констатировали, что «до сих пор мы не имели успеха в последовательном и убедительном выполнении этой программы». Поэтому во всех построениях «мы всё ещё должны допускать две реальности – поле и вещество» (Там же).

Развитие квантовой физики, начавшееся со знаменитой статьи М. Планка «О строении атомов и молекул» (1913), показало, что излучение носит двойственный корпускулярно-волновой характер. Нильс Бор не согласился с эйнштейновскими световыми квантами, предполагавшими дискретность пространственной структуры излучения. В вопросе о природе света Бор увидел гораздо более общую (не столько физическую), сколько методологическую проблему. Он писал, что «вопрос о существовании или отсутствии связи отдельных атомарных процессов нельзя просто рассматривать как различие между двумя чётко определёнными толкованиями распространения света в пустом пространстве, которые соответствовали бы корпускулярной или волновой теории света» (Бор Н. О действии атомов при соударениях //Бор Н. Избранные научные труды. Т. 1. – М., 1970. – С. 560). Речь, вероятнее всего, должна идти о том, насколько пространственно-временные представления, с помощью которых физики пытаются объяснить явления природы, применимы к описанию атомных процессов.

Следует подчеркнуть, что в классической механике всякая частица движется по определённой траектории, так что в любой момент времени точно фиксированы её координата и импульс. Напротив, микрочастицы из-за наличия у них волновых свойств существенным образом отличаются от классических частиц. Это следует из корпускулярно-волновой природы микрочастиц. Так, понятие «длина волны в данной точке» лишено физического смысла, а поскольку импульс выражается через длину волны ( )*, то микрочастица с определённым импульсом имеет полностью неопределённую координату. И наоборот, если микрочастица находится в состоянии с точным значением координаты, то её импульс является полностью неопределённым.

В. Гейзенберг, учитывая волновые свойства микрочастиц, пришёл в 1927 году к следующему выводу: объект микромира невозможно одновременно с любой наперёд заданной точностью характеризовать и координатой, и импульсом. Согласно соотношению неопределённостей Гейзенберга, микрочастица не может иметь одновременно координату х и определённый импульс р. Причём, неопределённости данных величин удовлетворяют условию

,

т.е. произведение неопределённостей координаты и импульса не может быть меньше постоянной Планка.